Upper oesophageal perforation: a complication of perioperative placement of an orogastric tube. 

Case report Mr Nadeem Zaidi FOPS, FCARCSI, Mr Sanjay Panchal MS, FRCS

INTRODUCTION

Basic principles of laparoscopic or minimally invasive surgery are the creation of pneumoperitoneum and the appropriate positioning of the patient (Trendelenburg for gymnacological and anti-Trendelenburg for upper gastrointestinal surgery). At times gastric decompression is also required which is done by the placement of a nasogastric or orogastric tube. In an anaesthetised patient with an endotracheal tube in place this can be tricky and technically difficult because of the changes in the upper airway anatomy of an anaesthetised patient. We are presenting a case of upper oesophageal perforation resulting from a difficult orogastric/nasogastric tube placement in a patient who underwent laparoscopic cholecystectomy under general anaesthesia.

CASE HISTORY

A 70 year old male patient (ASA -2) was scheduled for an elective laparoscopic cholecystectomy. A balanced general anaesthetic technique was planned for him. He was induced with propofol and fentanyl. Rocuronium was used as muscle relaxant to facilitate endotracheal intubation and mechanical ventilation. Anaesthesia was maintained with oxygen, air and sevoflurane. Perioperative the surgeon requested an orogastric or nasogastric tube for gastric decompression. A 14-F orogastric tube was attempted first with no success. Later different sizes of tubes, tubes made up of different materials, and stiffer and frozen tubes were tried using conventional methods with no success. These multiple attempts were also facilitated with direct laryngoscopy and Magill force using both nasal and oral route. Finally an endotracheal tube with an iatrogenic slit made on its concave side was used. It was placed, orally with the help of direct laryngoscope in the upper oesophagus. Through it an orogastric tube was inserted for gastric decompression. The remainder of the surgical and anaesthetic course was uneventful. The orogastric tube was removed at the end of surgery. Recovery phase of the patient was smooth and he was transferred out to the ward after his brief stay in the recovery room. The patient was later discharged from the hospital on the sixth postoperative day.

DISCUSSION

Although nasogastric tube insertion is considered a safe procedure, it has the potential to cause a variety of complications. Complications related to it are caused by either misplacement, trauma or obstruction to oro/ nasopharynx, or various upper airway structures.

In an anaesthetised patient with an endotracheal tube in place, insertion of an orogastric or nasogastric tube may be technically difficult, traumatic and frustrating on the part of the anaesthetist. The average first attempt failure rate reported was 50-65% in this regard, using conventional methods with the head of the patient in a neutral position. Often the nasogastric tube is kinked in piriform fossa. Arytenoid cartilage and upper oesophagus (which is compressed by the cuff of endotracheal tube) are the other sites of impaction for a nasogastric tube. Repeated attempts in this regard can cause not only upper airway trauma and bleeding but also put the patient at risk for post pharyngeal wall or upper oesophageal perforation.

Upper oesophageal submucosal damage or tear can happen with repeated upper air way manipulations, use of a stiff nasogastric tube or use of a slit endotracheal tube to facilitate the placement of nasogastric tube. This can produce surgical emphysema, dysphagia and mediastinitis.

We struggled to put an orogastric or nasogastric tube in our patient. We used different conventional techniques with no success. We managed to put an orogastric tube with the help of a slit endotracheal tube. Repeated attempts produce a small upper oesophageal tear which became clinically symptomatic after 16 hours of surgery. Further investigations and subsequent management was prompt and quick which prevented any further morbidity.

To facilitate the safe placement of an oro or nasogastric tube in anaesthetised patient various techniques have been described in literature. Success with these techniques is very variable, which depends upon individual experience and preference (Table 1).

Table 1: Various techniques of oro/nasogastric tube placement in an anaesthetised/intubated patient

<table>
<thead>
<tr>
<th>Technique</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head and neck rotation</td>
<td>Lateral neck pressure</td>
</tr>
<tr>
<td>Cricoid cartilage manipulation (Reverse Sellick manoeuvre)</td>
<td>Use of naso or oropharyngeal airway</td>
</tr>
<tr>
<td>Use of frozen or stiffer tubes</td>
<td>Use of guide wires</td>
</tr>
<tr>
<td>Use of guide wires</td>
<td>Retrograde placement of nasogastric tubes</td>
</tr>
<tr>
<td>Endoscopically (both oral and nasal route)</td>
<td>Use of slit/split endotracheal tube</td>
</tr>
<tr>
<td>With the help of glide scope</td>
<td></td>
</tr>
</tbody>
</table>

Flow of contrast down to pharynx and oesophagus (Figure 4). The patient was later discharged from the hospital on the sixth postoperative day.


Conflict of interest – none

Correspondence to: syed-nadeem.zaidi@mbht.nhs.uk
Nadeem Zaidi FCPS, FCARCSI, Consultant Anaesthetist, Furness General Hospital, Barrow in Furness
Sanjay Panchal MS, FRCS, Consultant Surgeon Furness General Hospital, Barrow in Furness