RATS, MOLES AND VON RECKLINGHAUSEN
RW Blewitt, Consultant Pathologist, Royal Lancaster Infirmary

VON RECKLINGHAUSEN'S DISEASE

Neurofibromatosis type 1 or von Recklinghausen's disease is one of the most striking of all genetic disorders and is characterised by skin lumps, café au lait patches, iris nodules, skinfold freckling, and deep-seated neural tumours. Patients are usually normal at birth. Skin lumps (neurofibromas) start to develop in childhood and early adolescence, increase in number into old age, and can become extremely disfiguring (Figure 1). Café au lait patches are flat, lightly-pigmented areas of skin, six or more of which are almost diagnostic of neurofibromatosis. Most patients also have freckles in axillae and groins. Iris lesions are pigmented hamartomas known as Lisch nodules. Deep nerve can be enormously expanded by plexiform neurofibromas causing considerable morbidity.

Similar conditions have been reported in historical literature as far back as the thirteenth century. In 1847 Virchow described a family with cutaneous neuromas. Friedrich von Recklinghausen, who at the age of 22 had become Virchow's assistant, made a further description of the condition in 1882 and coined the term "neurofibroma", dedicating his paper to Virchow on the 25th anniversary of the Pathological Institute of Berlin. It is now realised that neurofibromatosis comprises two separate syndromes; neurofibromatosis type 1 (described above) and neurofibromatosis type 2 which is much rarer and dominated by deep-seated tumours, particularly acoustic neuromas.

Neurofibromatosis type 1 is also one of the commoner genetic diseases, its incidence approaching that of cystic fibrosis (Figure 2). By "neurofibromatosis" we shall refer in this article to neurofibromatosis type 1.

The defective gene in neurofibromatosis is on chromosome 17. The gene has one of the highest mutation rates known in humans and about 50 percent of cases of neurofibromatosis represent new mutations. The gene codes for the synthesis of a protein neurofibromin which restrains cell proliferation by inhibiting ras.

RAS

The term "ras" is derived from "rat sarcoma virus". This virus was discovered almost by accident in 1964 by Jennifer Harvey at Northwick Park. Rats were infected at birth with Moloney leukaemia virus which is a slow-transforming RNA virus composed of just three genes (Figure 3). A DNA copy of these genes is now known to be integrated into the host cell genome and leads eventually to leukaemia in a proportion of cases. From one of the resulting leukaemic rats, filtrates of diluted plasma were found to contain an extremely potent cancer-producing agent, rat sarcoma virus. This produced sarcomas in rats only 12 days after inoculation and killed the animals within a month.

Rat sarcoma virus is a fast-transforming RNA virus composed of three genes, one of which is an oncogene ras (Figure 4). The virus probably evolved from the leukaemia virus by substitution of the viral pol gene by a ras gene derived from the host animal. Having lost the pol gene, however, rat sarcoma virus needs the help of a concurrent RNA virus infection to replicate itself i.e. it has become a defective virus. Although first found in rat sarcoma virus, the ras gene seems to be ubiquitous and an essential component of eukaryotic cells from the tiny soil nematode worm (Caenorhabditis elegans) to humans.

The ras gene codes for a protein which is a central part of the signalling pathway leading to cell division (Figure 5). Ras protein is anchored to the inner surface of the cell...
Cycling between an inactive form, and an active sequence where successive components are phosphorylated and an active ras-GTP. Ras-GTP activates the signalling cascade sequence where successive components are phosphorylated ending in MAPK (mitogen-activated protein kinase). MAPK can then enter the nucleus to modify the transcription of genes involved in cell division.

As a result of the signal, cells leave a resting state (GO), enter the mitotic cycle and progress through the G1 phase as far the cycle gate ("restriction point") where further controls are effected before cells are permitted to commence DNA replication of the S phase.

The mitogenic signalling pathway is initiated when growth factor receptors in the cell membrane combine with their specific growth factor in the extracellular fluid. Growth factor receptors are transmembrane proteins. When the extracellular component receives its growth factor, the intracellular component causes ras-GDP to be phosphorylated and thereby activated.

Ras itself slowly hydrolyses GTP to GDP and therefore gradually inactivates itself, behaving as a GTPase enzyme. Neurofibromin is one of a number of negative-regulators of ras which rapidly hydrolyse ras-GTP to ras-GDP. In the absence of neurofibromin there is accumulation of ras-GTP and excessive mitotic drive. This type of mutation is found in 90% of pancreatic carcinomas, 50% of colorectal carcinomas as well as many other tumour types. Mutant ras or missing neurofibromin do not by themselves lead to cancer. After all cancer is a multistep process and an activated ras pathway drives cells up to the mitotic control gate but not necessarily through it. Cancer also requires the gate to be wedged open and cells to have unlimited mitotic potential. Recently human cells have been converted into cancer in a culture dish. A minimum of four separate mutations were required:

- Telomerase has to be activated (allowing unlimited mitoses)
- Ras has to be permanently activated
- P53 has to be activated
- Retinoblastoma protein has to be inactivated

Malignant transformation of neurofibromas, mostly of the large plexiform lesions, is a rare complication of neurofibromatosis, affecting about 2% of cases. The process is a result of the accumulation of further specific mutations in the tumour cells. Neurofibrosarcoma is extremely rare in normal individuals because acquisition of the full set of mutations, without a head-start, is highly improbable.

NEUROFIBROMAS

Patients with neurofibromatosis are usually normal at birth. At this stage all their cells will contain a single functional neurofibromin-producing gene and will behave normally. It is only when the one remaining gene is lost by mutation (the second hit) that ras is no longer controlled and a neurofibroma develops. The process seems to target the specialised fibroblasts in nerve sheaths and will be a random event related to mitosis. The mutation rate (for non-germline cells) has been calculated to be 1 in 10 million per gene per cell generation. The numbers and proliferative activity of these specialised fibroblasts is unknown, but each neurofibroma marks the site where a single fibroblast sustained a mutualional hit on its one remaining functional neurofibromin gene.

Patients are born normal because their specialised fibroblasts have not yet passed through sufficient mitoses (cell generations) to make the specific mutation probable.

Can we learn anything from neurofibromatosis? Here we have a condition in which patients start off apparently normal but then gradually develop pigmented skin patches and nodules, now known to be due to the acquisition of single mutations at a particular gene site. Could common pigmented melanocytic naevi (moles) also be the result of a single dominant genetic mutation?

MOLES

It has never been clear whether moles are malformations or tumours, but most authors consider moles to be benign neoplasms. The rest of us are probably too busy diagnosing and removing moles to ponder their pathogenesis for long. For tumours, however, moles are far too common and precocious; unlike malformations, moles are rarely present at birth.

Most people are born mole-free. Only about 1% of newborn infants are found to have a mole (congenital melanocytic naevus). Moles usually appear in childhood and adolescence and reach a maximum at about 25 years of age. The average
Melanocytes in skin can occur during their migration. They arise in the neural crest, which is a short-lived embryonic structure that gives rise to a range of different cell types including neural tissue, some cranial connective tissue, adrenal medulla and melanocytes. The neural crest soon undergoes subdivision into several anatomical parts, but its proliferating cells remain pluripotent during most of this phase, and final determination of their differentiation may even occur during their migration.

In the skin melanocytes settle in the basal layer of the epidermis (including hair follicles) and are normally separated from each other by about six basal epidermal cells. Each melanocyte supplies pigment to approximately 36 adjacent keratinocytes, forming an "epidermal melanin unit." Within the melanocyte, the enzyme tyrosinase converts tyrosine to dopa and then dopaquinone, which is then oxidised to melanin. Melanocytes have long dendritic cytoplasmic processes through which melanin is transported to the keratinocytes.

The population of cutaneous melanocytes in an adult male has been estimated at 2x10^6 cells/m^2 of skin. At birth there are about 800 melanocytes/mm^2 of skin, a concentration which is maintained in adults and all races. Melanocytes in skin can continue to reproduce themselves by mitosis, but this is rarely observed, unlike mitoses in other epidermal cells. By the age of forty, cutaneous melanocytes seem to become senescent and their density gradually declines throughout the rest of life, at 6-8% per decade. Loss of melanocytes from hair follicles is the cause of the all too familiar age-related greying of hair.

When normal cells divide there is a small chance of genetic mutation due to errors in DNA replication or subsequent phases of mitosis. Spontaneous mutation rates in somatic cells is thought to be about 1 in 10 million cells per generation per gene, usually expressed as 10^-7/gene/cell generation, but estimates have ranged from 5 x 10^-10 to 5 x 10^-9/gene/cell generation. A recent study of human fibroblasts has demonstrated a spontaneous mutation rate in the range 3 x 10^-6 to 5 x 10^-6. Amazing as it may seem, we can estimate the number of mutations in melanocytes and their precursors by tracing their development from zygote to adult skin.

A population of 2 x 10^6 cells will result in 31 doubling cycles for its generation from a single stem cell. I have assumed somewhat arbitrarily that the first neural crest cell is twenty divisions from the zygote, and that the neural crest cells expand from a single stem cell for a further twenty divisions to produce one million pre-melanocytes (lower shaded zone in figure). This number of cells incidentally weigh about 1 milligram. I have assumed that the cells migrate at this stage and colonise the fetal skin. From birth to adulthood skin surface area increases about 4-fold. This implies that the last three doubling cycles of melanocytes occur after birth i.e. cycles 28-31 (upper shaded zone in figure). The methods for calculating mutations (a to e in Figure 6) are different in three compartments, pre-neural crest, neural crest, and post-neural crest; formulae are given in the appendix.

MOLES ARE DUE TO A SINGLE MUTATION

The hypothesis is that a mutant melanocyte will grow into a mole. Several observations can now be made from the model:

- Almost all the mutations occur in the last few cycles i.e. after birth
- A mutation rate of 10^-8 generates a realistic number of moles in an adult
- Congenital moles will be rare. In this particular model, six mutant melanocytes are somewhere in the skin at birth but these may not yet have grown into a visible mole.

Involvement of more than one mutated gene is impossible as moles would be much too rare. Even taking a high rate for gene mutation (10^-6), the probability of two independent specific "hits" would be 10^-12 and a mole would only occur at most in 1% of adults, and more likely would be a rare curiosity just like sporadic neurofibromas.

For an infant to be born with a mole, a mutant melanocyte has not only to occur but have time to proliferate sufficiently to become visible by birth. The further back in melanocyte development that a mutant appears the larger will be the resulting congenital mole, as more doubling cycles can be completed by the mutant cell before birth. On the other hand mutants become more and more improbable as the population of melanocytes is traced back to its stem cell. So we can predict from our model the observation that the larger a congenital mole, as more doubling cycles after birth are sufficient to bring out most of

<table>
<thead>
<tr>
<th>population of cells</th>
<th>doubling cycle (completed) = x</th>
<th>mutated cells at rate (m) = 2 x 10^6</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 x 10^6</td>
<td>31</td>
<td>44</td>
<td>new</td>
</tr>
<tr>
<td>1.1 x 10^6</td>
<td>30</td>
<td>22</td>
<td>e</td>
</tr>
<tr>
<td>5.4 x 10^6</td>
<td>29</td>
<td>12</td>
<td>e</td>
</tr>
<tr>
<td>2.7 x 10^6</td>
<td>28</td>
<td>6.2</td>
<td>e</td>
</tr>
<tr>
<td>1.3 x 10^6</td>
<td>27</td>
<td>3.6</td>
<td>e</td>
</tr>
<tr>
<td>6.7 x 10^6</td>
<td>26</td>
<td>2.0</td>
<td>e</td>
</tr>
<tr>
<td>3.4 x 10^6</td>
<td>25</td>
<td>1.4</td>
<td>e</td>
</tr>
<tr>
<td>4.2 x 10^6</td>
<td>22</td>
<td>0.8</td>
<td>e</td>
</tr>
<tr>
<td>2.1 x 10^6</td>
<td>21</td>
<td>0.8</td>
<td>e</td>
</tr>
<tr>
<td>1.0 x 10^6</td>
<td>20</td>
<td>0.8</td>
<td>e</td>
</tr>
<tr>
<td>1.0 x 10^6</td>
<td>20</td>
<td>0.4</td>
<td>e</td>
</tr>
<tr>
<td>3.3 x 10^6</td>
<td>15</td>
<td>9.9 x 10^-6</td>
<td>e</td>
</tr>
<tr>
<td>1024</td>
<td>10</td>
<td>2.0 x 10^-6</td>
<td>e</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>3.2 x 10^-6</td>
<td>e</td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
<td>4.0 x 10^-7</td>
<td>e</td>
</tr>
</tbody>
</table>

Figure 6 Adult population of melanocytes derived by sequential doubling cycles from zygote. Some cycles and calculations omitted for brevity. Mutant cells expected, given a mutation rate of 1 x 10^-6 per cell per generation per gene (rate is doubled for two alleles).
the mutations due to the large population of dividing cells. Moles stop coming in adulthood because the skin is no longer explain the observation that sun exposure and maintenance chemotherapy cause excessive numbers of moles to develop.

The cellular effect of the "mole mutation" can only be guessed at. Melanocytes which form moles differ from normal melanocytes in several ways. Melanocytes have long dendritic cytoplasmic processes, keep well spaced out in the epidermis, and have strictly controlled growth. Mole cells are rounded, cluster together, and keep growing to form nodules. Cell to cell contact and cell adhesion to a substrate are known to activate signalling pathways which can control cell proliferation. Perhaps in moles cell contact fails to suppress growth.

It is just possible that the ras gene itself is the target for the mole mutation. A recent study has identified a high incidence of ras mutations in congenital melanocytic naevi (moles). The ras gene probably presents a relatively small target for mutation as it only takes one of a few point mutations to fix ras in its active form. The mole mutation rate in the model is indeed rather low. A ras gene target could also explain why a single mutation might affect a cell; the mutant allele could still increase the cell content of activated ras. So are moles the result of a single (heterozygous) ras mutation?

Moles are, however, almost invariably benign. Just as in the neurofibroma, malignancy requires more highly-improbable mutational damage.

Acknowledgements
I am grateful to Dr P V Harrison for the clinical picture of neurofibromatosis and to Dr JA Morris for helpful discussions.

APPENDIX

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Formula</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>mx</td>
<td>28</td>
</tr>
<tr>
<td>b</td>
<td>mx/1.0 x 10^n</td>
<td>28</td>
</tr>
<tr>
<td>c</td>
<td>mx^2</td>
<td>28</td>
</tr>
<tr>
<td>d</td>
<td>Sigma mx^2 for x = 0 to x = 20</td>
<td>28</td>
</tr>
<tr>
<td>e</td>
<td>((2^x-1)- (2^n-1))/m</td>
<td>Derived from sum of geometric series</td>
</tr>
</tbody>
</table>

REFERENCES

1 Sams WM, Lynch PJ Principles and practice of dermatology. 1st ed Churchill Livingstone 1990
2 Gutman DH Parallels between tuberous sclerosis complex and neurofibromatosis: common threads in the same tapestry. Semin Pediatr Neurol 1998;5:276-286
3 Huson SM What level of care for the neurofibromatoses? Lancet 1999;353:1114-1116
11 Burck KB, Lui ET, Larrick JW Oncogenes Springer Verlag 1988
14 Kerkhoff E, Rapp UR Cell targets of ras/raf signaling Oncogene 1998;17:1457-1462
16 Weitzman JB, Yaniv M Rebuilding the road to cancer. Nature 1999;400:401-402
19 Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991;51(12):3075-3079
27 Moschella and Hurley Dermatology 3rd ed Saunders 1999
29 Kincannon J, Boutzale C The physiology of pigmented nevi. Pediatrics 1999;104:1042-1045

303